Copying lists and dictionaries

This video will discuss how to copy lists and dictionaries.



Copying lists / dictionaries

It is occasionally useful to copy a list or a dictionary

Assigning a new variable does not create a copy, it just
assigns another variable to the same list or dictionary.

>>> List] =[1,2,3,4]

modifying List2 also
modifies Listl —

>>> del List2[0] List1 and List2 refer

to the same list

>>> List2 = Listl

>>> Listl

[2,3.,4]

Copying lists or dictionaries can occasionally be useful; however, the correct method
for copying a list is not particularly obvious. For example, assigning a new variable to
an existing list does not copy the list — the new variable just refers to the original list.

In this example, both the Listl and List2 variable refer to the same list. Modifying
List2 also modifies List1.



Copying lists / dictionaries —
“superficial” copy

To copy a list or dictionary that has 1-level (i.e.
contains no sub-lists or sub-dictionaries)...

>>> copy

>>> Listl =[1,2,3,4] modifying List2
>>> List2 = copy.copy(List1) does not affect
>>> List2[0] Listl — List2 is an
>>> List] independent list
[1,2,3,4]

Note: this method is not suitable for a list that
contains sublists or a dictionary that contains
nested lists or dictionaries.

The copy module can be used to create a superficial copy of a list or a dictionary. This
method will only create a true copy for a 1-level list.

In the example, the copy method creates a true copy of Listl. Modifying List2 does
not affect List1.

If a list or dictionary contains multiple levels, then the sub-lists and sub-dictionaries
will not be true copies — modifying the “copies” will also modify the originals.



Copying lists / dictionaries
— “deep” copy

To copy a list or dictionaries that has 1 or more levels
(i.e. contains sub-lists or sub-dictionaries)...

>>> copy modifying sublist of
>>> List] =[[1,2], [6,7]] Lis?tZ doe.s not affect
>>> List2 = copy.deepcopy(List1) Listl — L_'Stz and all
>>> el List2[0][-1] sublists are

: independent of List1
>>> List]

[[1,2].[6, 7]]

The deepcopy method will create a true copy for a multi-level list or dictionary.

In this example, all elements of List1 and List2 are independent — modifying a sub-list
in List2 does not affect the sub-list in List1.



Example script — copying list

Suppose we want to pair each value in a list with every
other value in the list but we don’t want duplicate

palrlngs FRAM CAOV

o FRAM QURU

copy FRAM QUAL

sppLst = ['FRAM’, ‘CAOV", ‘QURU", ‘QUAL’, ‘ACRU’] |ty aum
Tiat _ : Lst CAOV QUAL
sppLst_copy = copy.copy(sppLst) i e

spp! in sppLst: QURU QUAL

i QURU ACRU

sppLst_copy[sppLst copy.index(sppl)] et
spp2 i1 sppLst_copy:

sppl, spp2

delete sppl item
from the copy list so
that it will not be in

any future pairs

This slide will show an example of a script that uses a copied list. In this example, we
want to pair each item in the list with every other item but we don’t want to allow
any duplicate pairings.

The list is a single level list so we'll use the copy method to copy it.

We'll create a 2-level for loop — the top-level iterates through the original list.

At the beginning of the top-level loop we’ll delete spp1 from the copied list. This
eliminate redundant pairings.

The 2" |level of the loop iterates through the copy of the list.

The result of the script has all possible unique combinations of the list items.



